Zika Virus

Ingrid Rabe
Medical Epidemiologist
Arboviral Diseases Branch
Centers for Disease Control and Prevention

February 1, 2016
Zika Virus

- Single stranded RNA virus
- Genus *Flavivirus*, family *Flaviviridae*
- Closely related to dengue, yellow fever, Japanese encephalitis, and West Nile viruses
- Transmitted to humans primarily by *Aedes* (*Stegomyia*) species mosquitoes
Zika Virus Vectors: Aedes Mosquitoes

- *Aedes (stegomyia)* species mosquitoes
 - *Ae. aegypti* more efficient vectors for humans
 - *Ae. albopictus*

- Also transmit dengue and chikungunya viruses
- Lay eggs in domestic water-holding containers
- Live in and around households
- Aggressive daytime biters; can also bite at night
Aedes aegypti and Aedes albopictus Mosquitoes: Geographic Distribution in the United States

Aedes aegypti

Aedes albopictus
Zika Virus Transmission Cycles

Sylvatic (jungle) cycle

Epidemic (urban) cycle
Other Modes of Transmission

- Maternal-fetal
 - Intrauterine
 - Perinatal

- Other
 - Sexual
 - Blood transfusion
 - Laboratory exposure

- Theoretical
 - Organ or tissue transplantation
 - Breast milk
Zika Virus:
Countries and Territories with Active Zika Virus Transmission
as of February 2, 2016

Zika Virus Epidemiology

- First isolated from a monkey in Uganda in 1947
- Prior to 2007, only sporadic human disease cases reported from Africa and southeast Asia
- In 2007, first outbreak reported on Yap Island, Federated States of Micronesia
- In 2013–2014, >28,000 suspected cases reported from French Polynesia*

Zika Virus in the Americas

- In May 2015, the first locally-acquired cases in the Americas were reported in Brazil
- Currently, outbreaks are occurring in many countries or territories in the Americas, including the Commonwealth of Puerto Rico and the U.S. Virgin Islands
- Spread to other countries likely
Zika Virus in the Continental United States

- Local vector-borne transmission of Zika virus has not been reported in the continental United States.
- Since 2011, there have been laboratory-confirmed Zika virus cases identified in travelers returning from areas with local transmission.
- With current outbreaks in the Americas, cases among U.S. travelers will most likely increase.
- Imported cases may result in virus introduction and local spread in some areas of U.S.
Zika Virus Incidence and Attack Rates

- Infection rate: 73% (95% CI 68–77)
- Symptomatic attack rate among infected: 18% (95% CI 10–27)
- All age groups affected
- Adults more likely to present for medical care
- No severe disease, hospitalizations, or deaths

Note: Rates based on serosurvey on Yap Island, 2007 (population 7,391)
Reported Clinical Symptoms Among Confirmed Zika Virus Disease Cases

<table>
<thead>
<tr>
<th>Symptoms</th>
<th>N</th>
<th>%</th>
</tr>
</thead>
<tbody>
<tr>
<td>Macular or papular rash</td>
<td>28</td>
<td>90%</td>
</tr>
<tr>
<td>Subjective fever</td>
<td>20</td>
<td>65%</td>
</tr>
<tr>
<td>Arthralgia</td>
<td>20</td>
<td>65%</td>
</tr>
<tr>
<td>Conjunctivitis</td>
<td>17</td>
<td>55%</td>
</tr>
<tr>
<td>Myalgia</td>
<td>15</td>
<td>48%</td>
</tr>
<tr>
<td>Headache</td>
<td>14</td>
<td>45%</td>
</tr>
<tr>
<td>Retro-orbital pain</td>
<td>12</td>
<td>39%</td>
</tr>
<tr>
<td>Edema</td>
<td>6</td>
<td>19%</td>
</tr>
<tr>
<td>Vomiting</td>
<td>3</td>
<td>10%</td>
</tr>
</tbody>
</table>

Duffy M. N Engl J Med 2009

Yap Island, 2007
Zika Virus Clinical Disease Course and Outcomes

- Clinical illness usually mild
- Symptoms last several days to a week
- Severe disease requiring hospitalization uncommon
- Fatalities are rare
- Guillain-Barré syndrome reported in patients following suspected Zika virus infection
 - Relationship to Zika virus infection is not known
Zika Virus and Microcephaly in Brazil

- Reports of a substantial increase in number of babies born with microcephaly in 2015 in Brazil; true baseline unknown
 - Zika virus infection identified in several infants born with microcephaly (including deaths) and in early fetal losses
 - Zika virus detected prenatally in amniotic fluid from two pregnant women (≈30 weeks gestation) with fetal microcephaly and intracranial calcifications detected on ultrasound
 - Some of the infants with microcephaly have tested negative for Zika virus

- Incidence of microcephaly among fetuses with congenital Zika infection is unknown
Rates of Microcephaly Over Time: the Americas and the Caribbean

Comparison of the rates of microcephaly in the Americas and Caribbean from 2010-2014 and 2015

Updated as of Epidemiological Week 52 (December 27, 2015 – January 2, 2016)

Microcephaly rates by state in Brazil (cases per 1,000 live births)
- 0.1-1.0
- 1.1-15.0
- 15.1-30.0
- 30.1-45.0
- 45.1-88.6

Countries with Zika confirmed cases
- Epi Week 52 2015
- Country limits
- Brazil State Boundaries

Data Source:
Reported from the IHR National Focal Points and through the Ministry of Health websites.

Map Production:
PAHO-WHO AD CHA IR ARO

Distinguishing Zika from Dengue and Chikungunya

- Dengue and chikungunya viruses transmitted by same mosquitoes with similar ecology
- Dengue and chikungunya can circulate in same area and rarely cause co-infections
- Diseases have similar clinical features
- Important to rule out dengue, as proper clinical management can improve outcome

*WHO dengue clinical management guidelines:
Clinical Features: Zika Virus Compared to Dengue and Chikungunya

<table>
<thead>
<tr>
<th>Features</th>
<th>Zika</th>
<th>Dengue</th>
<th>Chikungunya</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fever</td>
<td>++</td>
<td>+++</td>
<td>+++</td>
</tr>
<tr>
<td>Rash</td>
<td>+++</td>
<td>+</td>
<td>++</td>
</tr>
<tr>
<td>Conjunctivitis</td>
<td>++</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Arthralgia</td>
<td>++</td>
<td>+</td>
<td>+++</td>
</tr>
<tr>
<td>Myalgia</td>
<td>+</td>
<td>++</td>
<td>+</td>
</tr>
<tr>
<td>Headache</td>
<td>+</td>
<td>++</td>
<td>++</td>
</tr>
<tr>
<td>Hemorrhage</td>
<td>-</td>
<td>++</td>
<td>-</td>
</tr>
<tr>
<td>Shock</td>
<td>-</td>
<td>+</td>
<td>-</td>
</tr>
</tbody>
</table>
Diagnostic Testing for Zika Virus

- Reverse transcriptase-polymerase chain reaction (RT-PCR) for viral RNA in serum collected ≤7 days after illness onset
- Serology for IgM and neutralizing antibodies in serum collected ≥4 days after illness onset
- Plaque reduction neutralization test (PRNT) for ≥4-fold rise in virus-specific neutralizing antibodies in paired sera
- Immunohistochemical (IHC) staining for viral antigens or RT-PCR on fixed tissues
Serology Cross-Reactions with Other Flaviviruses

- Zika virus serology (IgM) can be positive due to antibodies against related flaviviruses (e.g., dengue and yellow fever viruses)
- Neutralizing antibody testing may discriminate between cross-reacting antibodies in primary flavivirus infections
- Difficult to distinguish infecting virus in people previously infected with or vaccinated against a related flavivirus
- Healthcare providers should work with state and local health departments to ensure test results are interpreted correctly
Laboratories for Diagnostic Testing

- No commercially-available diagnostic tests
- Testing performed at CDC and a few state health departments
- CDC is working to expand laboratory diagnostic testing in states
- Healthcare providers should contact their state health department to facilitate diagnostic testing
Initial Assessment and Treatment

- No specific antiviral therapy
- Treatment is supportive (i.e., rest, fluids, analgesics, antipyretics)
- Suspected Zika virus infections should be evaluated and managed for possible dengue or chikungunya virus infections
- Aspirin and other NSAIDs should be avoided until dengue can be ruled out to reduce the risk of hemorrhage
Differential Diagnosis for Zika Virus Disease

- Dengue
- Chikungunya
- Leptospirosis
- Malaria
- Rickettsia
- Parvovirus
- Group A streptococcus
- Rubella
- Measles
- Adenovirus
- Enterovirus

* Similar clinical features
Zika Virus Disease Surveillance

- Consider in travelers with acute onset of fever, maculopapular rash, arthralgia, or conjunctivitis within 2 weeks after return.
- Inform and evaluate women who traveled to areas with Zika virus transmission while they were pregnant.
- Evaluate fetuses/infants of women infected during pregnancy for possible congenital infection and microcephaly.
- Be aware of possible local transmission in areas where *Aedes* species mosquitoes are active.
Reporting Zika Virus Disease Cases

- As an arboviral disease, Zika virus disease is a nationally notifiable disease
 - Healthcare providers encouraged to report suspected cases to their state health department

- State health departments are requested to report laboratory-confirmed cases to CDC

- Timely reporting allows health departments to assess and reduce the risk of local transmission or mitigate further spread
Zika Virus Preventive Measures

- No vaccine or medication to prevent infection or disease
- Primary prevention measure is to reduce mosquito exposure
- Pregnant women should consider postponing travel to areas with ongoing Zika virus outbreaks
- Protect infected people from mosquito exposure during first week of illness to prevent further transmission
Possible Future Course of Zika Virus in the Americas

- Virus will continue to spread in areas with competent vectors
 - Transmission increasing in Central America, Mexico, and Caribbean
 - Anticipate further spread in the Commonwealth of Puerto Rico and U.S. Virgin Islands
- Travel-associated cases introduce virus to U.S. states
 - Imported cases will result in some local transmission and outbreaks
 - Air conditioning may limit the size and scope of outbreaks
 - Colder temperatures will interrupt and possibly stop further spread
- Experience from dengue might be predictive
 - From 2010–2014, 1.5 million dengue cases reported per year to PAHO
 - 558 travel-related and 25 locally transmitted cases in U.S. states
Zika Virus Remaining Questions

- Incidence of maternal-fetal transmission by trimester
 - Factors that influence (e.g., severity of infection, maternal immune response)
- Risk of microcephaly and other fetal and neonatal outcomes
- Risk of Guillain-Barré syndrome
- Potential for long-term reservoirs of Zika
CDC Guidance - published

- Interim Guidelines for the Evaluation and Testing of Infants with Possible Congenital Zika Virus Infection — United States, 2016 (Jan 29, 2016)
- Interim Guidelines for Pregnant Women During a Zika Virus Outbreak — United States, 2016 (Jan 22, 2016)
- HAN: Recognizing, Managing, and Reporting Zika Virus Infections in Travelers Returning from Central America, South America, the Caribbean, and Mexico (Jan 15, 2016)
- Travel health notices http://wwwnc.cdc.gov/travel/notices/ (continually updating)
CDC Guidance - soon to be released

- Interim guidance for women of reproductive age in areas with local transmission of Zika virus

- Interim guidance for Zika virus disease case investigation, diagnosis, and response for U.S. state and territorial health departments
 - Procedures following different scenarios
 - Case data collection form
 - Draft case definitions and classifications
 - Diagnostic testing
CDC Activities

- Coordinate response with PAHO and other regional partners
- Assist with investigations of microcephaly and Guillain-Barré syndrome
- Continue to evaluate and revise guidance as new data emerge
- Distribute guidance through health notices, MMWR publications and the CDC website
- Communicate regularly with clinicians (e.g., COCA calls), professional organizations and state and local partners
Additional resources

- Travel notices: http://wwwnc.cdc.gov/travel/notices
Selected references

Thank you

For more information, contact CDC
1-800-CDC-INFO (232-4636)

The findings and conclusions in this report are those of the authors and do not necessarily represent the official position of the Centers for Disease Control and Prevention.